
A Proposed Definition of recob::Track Trajetory
Covariance Matrices

H. Greenlee

May 31, 2012

Contents

1 Introduction 1

2 Track Local Covariance Matrix 2
2.1 Use Cases . 3

2.1.1 Momentum Vector Error Matrix 3
2.1.2 Impact Parameters and Vertex Reconstruction 4

2.2 Implementation . 5

3 Global Covariance Matrix 5
3.1 Use Cases . 6

3.1.1 Momentum Vector Error Matrix 6
3.1.2 Impact Parameters and Vertex Reconstruction 7

1 Introduction

Class recob::Track includes the following data members for defining the track tra-
jectory.

std::vector<TVector3> fXYZ; // Trajectory positions.

std::vector<TVector3> fDir; // Trajectory directions.

std::vector<double> fFitMomentum; // Trajectory momenta.

std::vector<TMatrixD> fCov; // Trajectory errors.

The definitions of the position vectors, direction vectors, and momenta are reason-
ably obvious (positions and directions are specified in the LArSoft global coordinate
system, momenta in GeV/c, etc.). Up to now, the definition of the trajectory error
matrix (fCov) has never been specified and there is no obviously preferred definition.
The purpose of this document is to propose a definition of the trajectory error matrix.

1

2 Track Local Covariance Matrix

The minimum size of the trajectory error matrix is 5 × 5, corresponding to a 5-
dimensional track state vector on a surface. We consider the track state vector to
consist of the following five parameters: (u, v, u′, v′, 1/p), where (u, v, w) are a track-
local right-handed Cartesian coordinates and u′ = du/dw and v′ = dv/dw. The
(u, v, w) coordinate system is related to the global (x, y, z) coordinate system by a
translation plus rotation. The first four track parameters specify the position and
slope of the track on the surface w = 0.

A general rotation can be specified using three Euler angles. For our purpose
(specifying the plane w = 0 with arbitrary orientation in space), it is sufficient to
define a rotation matrix using two Euler angles θ and φ. We propose that the global-
to-local rotaiton matrix R(θ, φ) consist of a rotation by angle φ (0 ≤ φ ≤ 2π) about
the global x-axis, followed by a rotation by angle θ (−π/2 ≤ θ ≤ π/2) about the local
v-axis. Specifically,

R(θ, φ) =

 cos θ sin θ sin φ − sin θ cos φ
0 cos φ sin φ

sin θ − cos θ sin φ cos θ cos φ

 . (1)

The choice of rotation matrix is partially arbitrary. Equation 1 is just one possible
choice. Specifying a choice is the major content of this note.

The unit basis vectors of the track-local coordinate system in global coordinates
are the rows of the rotation matrix R (Eq. 1).

û = (cos θ, sin θ sin φ,− sin θ cos φ), (2)

v̂ = (0, cos φ, sin φ), (3)

ŵ = (sin θ,− cos θ sin φ, cos θ cos φ). (4)

To be clear, the content of this proposal consists of the following two requirements
regarding the track-local coordinate system.

• The local v-axis is in the global yz-plane.

• The local u-axis points in the +x direction.

The full global-to-local coordinate transformation can be written as u
v
w

 = R

 x− x0

y − y0

z − z0

 , (5)

and inversely (local-to-global), x− x0

y − y0

z − z0

 = RT

 u
v
w

 , (6)

where (x0, y0, z0) is the origin of the local coordinate system.

2

The global-to-local transformations defined by Eqs. 1–6 are already implemented
in class TrackFinder/SurfXYZ, which will make it convenient to implement in the
Hit-based Kalman filter (it should also be easy to implement in Genfit, since Genfit
effectively allows the track-local coordinate system to be specified using all three
Euler angles).

In momentum space, the same transformation equations obtain, except there is
no translation. pu

pv

pw

 = R

 px

py

pz

 , (7)

and inversely, px

py

pz

 = RT

 pu

pv

pw

 , (8)

A natural and mathematically well-behaved choice of track surface at any given
trajectory point is the surface perpendicular to the track direction, in which the track
state vector is (0, 0, 0, 0, 1/p). This track surface is achieved by setting local origin
(x0, y0, z0) equal to the trajectory position fXYZ, and setting the unit vector ŵ equal
to the trajectory direction fDir (solve for θ and φ).

2.1 Use Cases

This section gives several examples of how track parameters errors can be related to
errors of quantities in the global coordinate system.

2.1.1 Momentum Vector Error Matrix

For arbitrary track surface, the momentum vector in the track-local coordinate system
(assuming pw > 0) is

pu =
pu′√

1 + u′2 + v′2
, (9)

pv =
pv′√

1 + u′2 + v′2
, (10)

pw =
p√

1 + u′2 + v′2
. (11)

In the special case of a track surface perpendicular to the track (u′ = v′ = 0), this
reduces to pL = (0, 0, p).

The error matrix of the momentum vector comes from the lower right 3× 3 block
(u′, v′, 1/p) of the track error matrix. In order to transform errors from track param-
eter space to local momentum space, we need the Jacobian of the transformation of

3

Eqs. 9–11.

∂(pu, pv, pw)

∂(u′, v′, p−1)
=

∂pu

∂u′
∂pu

∂v′
∂pu

∂p−1

∂pv

∂u′
∂pv

∂v′
∂pv

∂p−1

∂pw

∂u′
∂pw

∂v′
∂pw

∂p−1

 , (12)

=

p(1+u′2)

[1+u′2+v′2]
3
2

− pu′v′

[1+u′2+v′2]
3
2
− p2u′√

1+u′2+v′2

− pu′v′

[1+u′2+v′2]
3
2

p(1+v′2)

[1+u′2+v′2]
3
2

− p2v′√
1+u′2+v′2

− pu′

[1+u′2+v′2]
3
2
− pv′

[1+u′2+v′2]
3
2
− p2
√

1+u′2+v′2

 . (13)

When we specialize to the case where the track surface is perpendicular to the track
(u′ = v′ = 0), the Jacobian simplifies to a diagonal matrix.

∂(pu, pv, pw)

∂(u′, v′, p−1)
=

 p 0 0
0 p 0
0 0 −p2

 . (14)

We can use the above Jacobian to transform the lower-right 3× 3 block of the track
parameter error matrix to the momentum vector error matrix in the local coordinate
system σ2

pL
.

σ2
pL

=

 p2σ2
u′ p2σ2

u′v′ −p3σ2
u′p−1

p2σ2
u′v′ p2σ2

v′ −p3σ2
v′p−1

−p3σ2
u′p−1 −p3σ2

v′p−1 p4σ2
p−1

 . (15)

Finally, the momentum error matrix can be obtained in the global coordinate system
using the rotation matrix R (Eq. 1).

σ2
p = RT σ2

pL
R. (16)

2.1.2 Impact Parameters and Vertex Reconstruction

Suppose that we have in the global coordinate system a vertex v = (xV , yV , zV) and
vertex error matrix σ2

v, and we wish to find the two-dimensional impact parameter
and error matrix. This sort of calculation is most conveniently carried out in the
track-local coordinate system. Therefore, we begin to rotating the vertex and vertex
error matrix to the local coordinate system.

vL = R (v − x0) = (uV , vV , wV). (17)

σ2
vL

= Rσ2
vR

T . (18)

To find the impact parameter, we find the point of closest approach by propagating
the track to the plane w = wV . Since in the local coordinate system the track is
propagating along the w-axis (nonmagnetic case), we know that the point of closest
approach is (0, 0, wV), and the two-dimensional impact parameter in the w-plane is
(−uV ,−vV).

4

The 2× 2 error matrix of the impact parameter gets contributions from the error
of the vertex and the error of the track. The error of the vertex is simply the upper
left 2× 2 block of the vertex error matrix in the local coordinate system.

To get the impact parameter error due to the track, the track error matrix needs
to be propagated from the plane w = 0 to w = wV . This propagation can be calcu-
lated exactly if propagation noise, interactions, and magnetic bend can be neglected
(probably a good approximation most of the time). If these things can’t be neglected,
then a track propagation utility can be used. The propagated (u, v) track parameters
at the point of closest approach are (not assuming u′ = v′ = 0),

uV = u + wV u′, (19)

vV = v + wV v′, (20)

Propagating errors, the impact parameter error matrix due to track errors is

σ2
uV

= σ2
u + w2

V σ2
u′ , (21)

σ2
vV

= σ2
v + w2

V σ2
v′ , (22)

σ2
uV vV

= σ2
uv + w2

V σ2
u′v′ + wV

(
σ2

uv′ + σ2
vu′

)
. (23)

2.2 Implementation

This proposal does not require any new data members be added to class
recob::Track. Modules that make recob::Track objects will be required to fill
data member fCov according to the definition of Sec. 2, which in practice means
propagating or transforming track objects to the track surface defined in Sec. 2.

Class recob::Track will require some additional methods. At a minimum,
recob::Track should provide a method to calculate and expose the rotation matrix
R (and probably also RT) as a TMatrixD object. Other methods that could be added
include transformations of arbitrary vectors and error matrices between the local and
global coordinate systems, the use cases described in Sec. 2.1, as well as methods to
support other use cases that people may think of or find useful (vertex constrained
tracks, kinematic fitting...). However, all use cases can also be implemented external
to recob::Track, provided only that the rotation matrix R is available to the user.

3 Global Covariance Matrix

An alternative definition to the covariance matrix defined in Sec. 2 is to consider
the covariance matrix corresponding to the seven-dimensional state vector defined in
the global coordinate system: (x, y, z, ẋ, ẏ, ż, 1/p), where ẋ = dx/ds, etc. In other
words, the global coordinate state vector correspond to the data members of class

5

recob::Track. It is not hard to show that the Jacobian of the transformation from
the local (five-dimensional) to the global (seven-dimensional) state space is

∂(x, y, z, ẋ, ẏ, ż, p−1)

∂(u, v, u′, v′, p−1)
= J =

ûx v̂x 0 0 0
ûy v̂y 0 0 0
ûz v̂z 0 0 0
0 0 ûx v̂x 0
0 0 ûy v̂y 0
0 0 ûz v̂z 0
0 0 0 0 1

. (24)

The nonzero 3× 2 blocks of J are simply the first two columns of the rotation matrix
R from the (u, v, w) coordinate system to the (x, y, z) coordinate system (Eq. 1).
The Jacobian of the inverse transformation from global to local coordinates is equally
simple.

∂(u, v, u′, v′, p−1)

∂(x, y, z, ẋ, ẏ, ż, p−1)
= JT =

ûx ûy ûz 0 0 0 0
v̂x v̂y v̂z 0 0 0 0
0 0 0 ûx ûy ûz 0
0 0 0 v̂x v̂y v̂z 0
0 0 0 0 0 0 1

 . (25)

Eqs. 24 and 25 are only valid in the case of a track surface perpendicular to the track
direction (w-axis parallel to track direction).

The Jacobian matrix J can be used to transform the covariance matrix of the
track state vector between the local and global coordinate systems.

σ2
G = Jσ2

LJT . (26)

σ2
L = JT σ2

GJ. (27)

The global covariance matrix σ2
G has dimension 7 × 7. The transformation of the

track covariance matrix from local to global coordinates and back is reversible due to
the fact that JT J = 1. Two of the seven eigenvalues of σ2

G are zero, corresponding to
eigenvectors (ŵx, ŵy, ŵz, 0, 0, 0, 0) and (0, 0, 0, ŵx, ŵy, ŵz, 0).

3.1 Use Cases

In this section we reexamine the use cases of Sec. 2.1.

3.1.1 Momentum Vector Error Matrix

In terms of the global state vector, the momentum vector is

px = pẋ, (28)

py = pẏ, (29)

pz = pż. (30)

6

The error matrix of the momentum vector comes from the lower right 4 × 4 block
(ẋ, ẏ, ż, 1/p) of the global track error matrix. The Jacobian of the transformation of
Eqs. 28–30 is

∂(px, py, pz)

∂(ẋ, ẏ, ż, p−1)
=

∂px

∂ẋ
∂px

∂ẏ
∂px

∂ż
∂px

∂p−1

∂py

∂ẋ
∂py

∂ẏ
∂py

∂ż
∂py

∂p−1

∂pz

∂ẋ
∂pz

∂ẏ
∂pz

∂ż
∂pz

∂p−1

 , (31)

=

 p 0 0 −p2ẋ
0 p 0 −p2ẏ
0 0 p −p2ż

 . (32)

We can use the above Jacobian to transform the lower-right 4× 4 block of the track
parameter error matrix to the momentum vector error matrix in the global coordinate
system. The components of the momentum error matrix are

σ2
pij = p2σ2

ẋiẋj
− p3ẋiσ

2
ẋjp−1 − p3ẋjσ

2
ẋip−1 + p4ẋiẋjσ

2
p−1 (33)

3.1.2 Impact Parameters and Vertex Reconstruction

The two-dimensional impact parameter can’t be defined except with reference to a
track local coordinate system. Given that this is the case, the best way to calculate
the error is to transform the global covariance matrix to the local coordinate system
using Eq. 27 and follow the procedure of Sec. 2.1.2

7

